Toggle navigation
Higher Academic
Humanities and Social Science
Agriculture
Anthropology / Ethnography
Archaeology
Architecture
Ayurveda
Biographies
Children's Books
Cookery
Culture Studies
Dalit Studies
Demography
Development Studies
Disha Books
Ecology
Economics
Education
English Language and Literature
Film & Media Studies
Gender Studies
Geography
Governance
Health
Hospitality and Home Science
History
Human Rights
International Relations
Journalism
Law
Linguistics
Literary Criticism
Literature in Translation
Migration Studies
OBS Atlas
Philosophy
Policy-makers
Political Science
Psychology
Public Administration
Public Policy
Religion
Sexuality Studies
Social Science
Sociology
Translation Studies
Women's Studies
Indian Languages
Hindi
Marathi
Kannada
Bangla
Tamil
General Books and Reference
General Books
Reference
Science, Technology, Medicine and Management
Ayurveda
Biotechnology
Business and Management
Computer Science
Engineering & Technology
Environment & Biodiversity
Mathematics
Medical and Paramedical
Physics and Chemistry
Popular Science
Science and technology Studies
Test Preparation
School Education
eBooks
eBooks on kindle
kobo
nook
iBookStore (for overseas customers)
Sign in / Register
Events
Publish with us
Contact Us
FAQs
Career
Downloads
Open Access
Advance Search
About Us
Publish With Us
Contact Us
About Us
Our Company
Our Associates
Our Network
Social Responsibility
Act
Projects
Investors
Information for Shareholders
Annual Return Form MGT-7
Sign in / Register
School Education
Events
Publish with us
Contact Us
FAQs
Career
Downloads
Open Access
Advance Search
×
Advanced Modern Algebra
Advanced Modern Algebra
Joseph J. Rotman
Price
3100
ISBN
9781470419165
Language
English
Pages
1024
Format
Paperback
Dimensions
180 x 240 mm
Year of Publishing
2014
Series
American Mathematical Society
Territorial Rights
Restricted
Imprint
Universities Press
Catalogues
Mathematics
About the Book
About the Author
Table of Contents
Joseph J. Rotman
.
Editorial Board
David Cox (Chair), Steven G. Krantz, Rafe Mazzeo, Martin Scharlemann.
Preface to Second Edition ix
Special Notation xiii
Chapter 1. Groups I 1
1.1. Classical Formulas 1
1.2. Permutations 5
1.3. Groups 16
1.4. Lagrange’s Theorem 28
1.5. Homomorphisms 38
1.6. Quotient Groups 47
1.7. Group Actions 60
1.8. Counting 76
Chapter 2. Commutative Rings I 81
2.1. First Properties 81
2.2. Polynomials 91
2.3. Homomorphisms 96
2.4. From Arithmetic to Polynomials 102
2.5. Irreducibility 115
2.6. Euclidean Rings and Principal Ideal Domains 123
2.7. Vector Spaces 133
2.8. Linear Transformations and Matrices 145
2.9. Quotient Rings and Finite Fields 156
Chapter 3. Galois Theory 173
3.1. Insolvability of the Quintic 173
v
vi Contents
3.1.1. Classical Formulas and Solvability by Radicals 181
3.1.2. Translation into Group Theory 184
3.2. Fundamental Theorem of Galois Theory 192
3.3. Calculations of Galois Groups 212
Chapter 4. Groups II 223
4.1. Finite Abelian Groups 223
4.1.1. Direct Sums 223
4.1.2. Basis Theorem 230
4.1.3. Fundamental Theorem 236
4.2. Sylow Theorems 243
4.3. Solvable Groups 252
4.4. Projective Unimodular Groups 263
4.5. Free Groups and Presentations 270
4.6. Nielsen–Schreier Theorem 285
Chapter 5. Commutative Rings II 295
5.1. Prime Ideals and Maximal Ideals 295
5.2. Unique Factorization Domains 302
5.3. Noetherian Rings 312
5.4. Zorn’s Lemma and Applications 316
5.4.1. Zorn’s Lemma 317
5.4.2. Vector Spaces 321
5.4.3. Algebraic Closure 325
5.4.4. L¨uroth’s Theorem 331
5.4.5. Transcendence 335
5.4.6. Separability 342
5.5. Varieties 348
5.5.1. Varieties and Ideals 349
5.5.2. Nullstellensatz 354
5.5.3. Irreducible Varieties 358
5.5.4. Primary Decomposition 361
5.6. Algorithms in k[x1, . . . , xn] 369
5.6.1. Monomial Orders 370
5.6.2. Division Algorithm 376
5.7. Gr¨obner Bases 379
5.7.1. Buchberger’s Algorithm 381
Chapter 6. Rings 391
6.1. Modules 391
6.2. Categories 418
6.3. Functors 437
6.4. Free and Projective Modules 450
Contents vii
6.5. Injective Modules 460
6.6. Tensor Products 469
6.7. Adjoint Isomorphisms 488
6.8. Flat Modules 493
6.9. Limits 498
6.10. Adjoint Functors 514
6.11. Galois Theory for Infinite Extensions 518
Chapter 7. Representation Theory 525
7.1. Chain Conditions 525
7.2. Jacobson Radical 534
7.3. Semisimple Rings 539
7.4. Wedderburn–Artin Theorems 550
7.5. Characters 563
7.6. Theorems of Burnside and of Frobenius 590
7.7. Division Algebras 600
7.8. Abelian Categories 614
7.9. Module Categories 626
Chapter 8. Advanced Linear Algebra 635
8.1. Modules over PIDs 635
8.1.1. Divisible Groups 646
8.2. Rational Canonical Forms 655
8.3. Jordan Canonical Forms 664
8.4. Smith Normal Forms 671
8.5. Bilinear Forms 682
8.5.1. Inner Product Spaces 682
8.5.2. Isometries 694
8.6. Graded Algebras 704
8.6.1. Tensor Algebra 706
8.6.2. Exterior Algebra 715
8.7. Determinants 729
8.8. Lie Algebras 743
Chapter 9. Homology 751
9.1. Simplicial Homology 751
9.2. Semidirect Products 757
9.3. General Extensions and Cohomology 765
9.3.1. H2(Q,K) and Extensions 766
9.3.2. H1(Q,K) and Conjugacy 774
9.4. Homology Functors 782
viii Contents
9.5. Derived Functors 796
9.5.1. Left Derived Functors 797
9.5.2. Right Derived Covariant Functors 808
9.5.3. Right Derived Contravariant Functors 811
9.6. Ext 815
9.7. Tor 825
9.8. Cohomology of Groups 831
9.9. Crossed Products 848
9.10. Introduction to Spectral Sequences 854
9.11. Grothendieck Groups 858
9.11.1. The Functor K0 858
9.11.2. The Functor G0 862
Chapter 10. Commutative Rings III 873
10.1. Local and Global 873
10.1.1. Subgroups of Q 873
10.2. Localization 881
10.3. Dedekind Rings 899
10.3.1. Integrality 900
10.3.2. Nullstellensatz Redux 908
10.3.3. Algebraic Integers 915
10.3.4. Characterizations of Dedekind Rings 927
10.3.5. Finitely Generated Modules over Dedekind Rings 937
10.4. Homological Dimensions 945
10.5. Hilbert’s Theorem on Syzygies 956
10.6. Commutative Noetherian Rings 961
10.7. Regular Local Rings 969
Bibliography 985
Index 991