Electromagnetic Waves and Transmission Lines
Y Mallikarjuna Reddy
180 x 240 mm
Year of Publishing
Territorial Rights
Universities Press

Electromagnetic Waves and Transmission Lines, designed according to the most recent curriculum of the undergraduate electronics and communication engineering programme of JNTU, also conforms to the syllabus of many major technical universities in India. It adopts a straightforward approach of presenting theoretical concepts and supporting their understanding with several worked out examples.

The book begins with a review of vector analysis, the essential mathematical tool for working with electromagnetic fields. It covers static and time varying electromagnetic fields and analyses the transmission. The emphasis of the approach is on making the mathematical analyses unambiguous with clear explanations, useful analogies, worked-out examples, and illustrations.

Salient features:

  • Clear and concise explanations facilitate independent learning
  • A large number of worked-out examples and an equal variety in exercises
  • JNTU syllabus compliance and the inclusion of several problems drawn from previous JNTU question papers
  • Stress on fundamental concepts and problem solving

Mallikarjuna Reddy Yennapusa, Principal, Vasireddy Venkatadri Institute of Technology (VVIT), Nambur, Guntur, and Professor, Department of Electronics and Communication Engineering, has more than 23 years of experience in the teaching field, which includes research, guiding PhD students and administration at various levels.

He obtained his BE (1987) from Osmania University, MTech (1990) from JNTU Kakinada and PhD (2009) from Osmania University for his work on radar signal processing. His areas of interest are DSP, radar, speech processing and missile technology. He has published his research work in reputed journals and is the author of Probability Theory and Stochastic Processes and Electromagnetic Fields, both textbooks for undergraduate engineering programmes. He is a life member of the Institution of Engineers, India, and ISTE, India.


1. Introduction to Vector Fields
1.1 Introduction 
1.2 Basic Definitions 
1.3 Vector Addition and Subtraction 
1.4 Vector Multiplication 
1.4.1 Dot Product 
1.4.2 Cross Product 
1.5 Triple Products 
1.5.1 Scalar Triple Product 
1.5.2 Vector Triple Product 
1.6 Orthogonal Coordinate System 
1.6.1 Cartesian or Rectangular Coordinate System 
1.6.2 Circular Cylindrical Coordinate System 
1.6.3 Spherical Coordinate System 
1.7 Transformation of Vectors 
1.8 Differential Elements 
1.9 Line, Surface and Volume Integrals 
1.10 Gradient, Divergence and Curl of a Vector 
1.11 Del Operators 
1.12 Useful Theorems 
Review Questions 
Multiple choice Questions 

2. Electrostatics
2.1       Introduction to Electrostatic Fields 
2.2       Coulomb’s law 
2.3       Force in Terms of Rectangular Coordinates 
2.4       Force due to N Number of Charges 
2.5 Electric Field Intensity (E) 
2.6 Charge Distributions 
2.7 Electric Field Intensity due to Charge Distributions 

2.8       Electric Field due to Infinite Line Charge 
2.9       Electric Field due to a Finite Line Charge 
2.10     Electric Field Strength due to a Circular Ring of Charge 
2.11     Electric Field Strength due to an Infinite Sheet of Charge 
2.12     Electric Field Strength due to a Sheet of Circular Disc 
2.13     Electric Flux and Flux Density 
2.14     Electric Flux Density due to Point Charge Q 
2.15     Electric Flux Density due to Charge Distributions 
2.16     Gauss’ Law (Integral Form) 
2.17     Gauss’ Law in Point Form (Maxwell’s First Law) 
2.18     Divergence of Electric Flux Density 
2.19     Divergence Theorem of Electric Flux Density 
2.20     Electric Flux Density due to an Infinite Line Charge Using Gauss’ Law 
2.21     Flux Density due to an Infinite Sheet Charge Using Gauss’ Law 
2.22     Flux Density for a Coaxial Cable 
2.23     Flux Density for a Spherical Shell of Charge 
2.24     Flux Density for a Uniformly Charged Sphere 
2.25     Work Done in Moving a Point Charge in an Electrostatic Field 
2.26 Electric Potential 
2.27     Potential due to a Point Charge 
2.28     Potential due to Point Charges 
2.29     Potential due to Charge Distribution 
2.30     Potential Difference due to an Infinite Line Charge 

2.31     Potential due to a Line Charge of Finite Length 
2.32     Potential due to a Circular Ring 
2.33     Potential Gradient 
2.34     Relationship between E and V: Maxwell’s Second Equation 
2.35     Potential Function (V ) 
2.36     Equipotential Surfaces 
2.37     Electric Dipole 
2.38     Potential due to an Electric Dipole 
2.39     Dipole Moment 
2.40     Electric Field due to a Dipole 
2.41     Torque on an Electric Dipole in an Electric Field 
2.42     Energy Stored in an Electrostatic Field 
2.43     Energy Stored in Terms of E and D 
Additional Solved Problems 
Review Questions 
Multiple-choice Questions     

3. Electric Fields in Conductors and Dielectrics
3.1       Introduction 
3.2       Conductors 
3.3       Behaviour of Conductors in an Electric Field 
3.4       Electric Current (I) 
3.5       Current Density (J) 
3.6       Ohm’s Law and Conductivity 
3.7       Relationship between J and rv 
3.8       Point Form of Ohm’s Law (Relationship between J and E) 
3.9       Dielectric Materials 
3.10     Polarization 
3.11     Electric Displacement Vector in Dielectrics 
3.12     Continuity Equation 
3.13     Relaxation Time (Tr) 
3.14     Resistance and Power 
3.15     Boundary Conditions 
3.16     Poisson’s and Laplace’s Equations 
3.17     Uniqueness Theorem 
3.18     Electric Field between Two Concentric Conducting Spheres Using Laplace’s Equation 

3.19     Electric Field due to Coaxial Cable Using Laplace’s Equation 

3.20     Electric Field due to Semi Infinite Conducting Planes 

3.21     Electric Field due to Two Axial Conducting Cones 
3.22     Capacitance 
3.23     Capacitance between Two Concentric Spheres 
3.24     Capacitance of a Coaxial Cable 
3.25     Capacitance of Two Parallel Wires (Single-Phase Transmission Line) 
3.26     Energy Stored in a Capacitor 
3.27     Energy Stored in a Coaxial Cable 
Additional Solved Problems 
Review Questions 
Multiple-choice Questions 

4. Magnetostatics
4.1       Introduction 
4.2       Magnetic Field due to a Current-Carrying Conductor 
4.3       Magnetic Flux and Flux Density 
4.4       Biot–Savart’s Law 
4.5       Biot–Savart’s Law for Distributed Currents 
4.6       Oersted’s Experiment 
4.7       Magnetic Field Intensity due to an Infinitely Long Conductor 
4.8       Magnetic Field Intensity due to a Finite Length Conductor 
4.9       Magnetic Field Intensity along the Axis of a Circular Loop 
4.10     Magnetic Field Intensity at the Centre of an Equilateral Triangle Formed by a Wire of Length L 
4.11     Magnetic Field Intensity (H) at the Centre of a Square Formed by   a Current-Carrying Wire of Length L 
4.12     Magnetic Field Intensity due to a Regular Polygon 
4.13     Magnetic Field Intensity due to a Solenoid 
4.14     Maxwell’s Equation for Magnetic Flux Density 
4.15     Ampere’s Circuital Law or Ampere’s Work Law 
4.16     Magnetic Field Intensity due to a Solid Conductor 
4.17     Magnetic Field Intensity due to a Coaxial Cable 
4.18     Magnetic Field Intensity due to an Infinite Sheet of Current 
4.19     Magnetic Field Intensity at Any Point in between Two Infinite Parallel Surface Current Sheets 
4.20     Differential or Point Form of Ampere’s Circuital Law (Maxwell’s Third Equation) 
4.21     Stokes’ Theorem 

4.23     Point Form of Magnetic Flux Density 
4.24     Magnetic Field Intensity due to a Solenoid using Ampere’s Circuital Law 
4.25     Magnetic Field Intensity due to a Toroid using Ampere’s Circuital Law 
Additional Solved Problems 
Review Questions 
Multiple-choice Questions 

5. Magnetic Force and Inductance 
5.1       Introduction 
5.2       Scalar Magnetic Potential (Vm) 
5.3       Magnetic Potential at the Centre of a Square Loop 
5.4       Vector Magnetic Potential (A) 
5.5       Vector Magnetic Potential in the Field due to an Infinite Length Conductor 
5.6       Vector Magnetic Potential in the Field due to Finite Length Conductor 
5.7       Force and Torque on a Moving Charge 
5.8       Force on a Differential Current Element 
5.9       Ampere’s Force Law: Force Between Two Current Elements 
5.10     Force between Two Straight, Infinitely Long Parallel Current Carrying Conductors 
5.11     Magnetic Torque due to a Rectangular Differential Current Loop in a Magnetic Field 
5.12     Magnetic Dipole and Dipole Moment 
5.13     Boundary Conditions for Magnetic Field 
5.14     Inductor and Inductance 
5.15     Mutual Inductance 
5.16     Neumann’s Formula for Mutual Inductance 
5.17     Mutual Inductance between Two Solenoids 
5.18     Magnetic Energy 
5.19     Energy Density Stored in the Magnetic Field 
5.20     Energy Stored due to Mutual Inductance 
5.21     Magnetic Circuits 
5.22     Magnetic Materials 
5.23     Characteristics of Magnetic Materials 
Additional Solved Problems 
Review Questions 
Multiple-choice Questions 

6. Time-Varying Fields 
6.1       Introduction 
6.2       Faraday’s Law 
6.3       Induced EMF in an AC Generator 

6.4       Induced EMF in a Coil 
6.5       Equation of Continuity for Time-Varying Fields 
6.6       Modified Ampere’s Circuital Law for Time-Varying Fields 
6.7       Displacement Current 
6.8       Ratio between Conduction Current Density and Displacement Current Density 
6.9       Conduction, Convection and Displacement Currents 
6.10     Maxwell’s Equations for Static Fields 
6.11     Maxwell’s Equation for Sinusoidal (Harmonic) Time-Varying Fields 
6.12     Boundary Conditions 
Additional Solved Problems 
Review Questions 
Multiple-choice Questions

7. Electromagnetic Waves 
7.1       Introduction 
7.2       Wave Equations in a Homogeneous Medium 
7.2.1 Wave Equations for a Perfect Dielectric (Free Space) 
7.2.2 Wave Equations for a Conducting Medium 
7.3       Time Harmonic Wave Equations (Phasor Notation) 
7.4       Uniform Plan Wave Propagation 
7.5       Solution for the Uniform Plane Wave Equation 
7.6       Characteristic Impedance 
7.7       Wave Propagation in a Conducting Medium 
7.8       Characteristic Impedance in a Lossy Dielectric or Conducting Medium 
7.9       Wave Propagation in Perfect Dielectric Medium 
7.10     Expressions for a and b for a Conducting Medium 
7.11     Wave Propagation in Good Conductors 
7.12     Wave Propagation in Good Dielectrics 
7.13     Depth of Penetration (Skin Depth d ) 
7.14     Polarization of a Uniform Plane Wave 
7.14.1  Linear Polarization 
7.14.2  Circular Polarization 
7.14.3  Elliptical Polarization 
7.15     Direction Cosines of a Vector Field 
Additional Solved Problems 
Review Questions 
Exercise Problems 
Multiple-choice Questions 

8. Electromagnetic Wave Characteristics
8.1       Introduction 
8.2       Reflection and Refraction of a Uniform Plane Wave 
8.3       Reflection by a Perfect Conductor with Normal Incidence 
8.4       Reflection by a Perfect Dielectric—Normal Incidence 
8.5       Reflection of a Plane Wave—Oblique Incidence 
8.6       Reflection of a Horizontally Polarized Wave by a Perfect Conductor—Oblique Incidence 
8.7       Reflection of a Vertically Polarized Wave by a Perfect Conductor—Oblique Incidence 
8.8       Reflection by a Dielectric or Perfect Insulator—Oblique Incidence 
8.9       Brewster Angle 
8.10     Total Internal Reflection 
8.11     Surface Impedance 
8.12     Surface Resistance and Surface Reactance 
8.13     Poynting Vector and Poynting Theorem 
8.14     Poynting Theorem 
8.15     Power Loss in a Plane Conductor 
Additional Solved Problems 
Review Questions 
Multiple-choice Questions 

9. Transmission Lines - I
9.1       Introduction 
9.2       Types of Transmission Lines 
9.2.1 Transmission Line Parameters 
9.3       Transmission Line Equations 
9.4       Infinite Length Line
9.5 Transmission Line Terminated with Characteristic Impedance Z0 
9.6 Derivation of Attenuation and Phase Shift Constants 
9.7 Velocity of Propagation and Group Velocity 
9.8 Relationship between Group Velocity and Phase Velocity 
9.9       Lossless Transmission Line 
9.10     Distortionless Transmission Line 
9.11     High Frequency Transmission Line 
9.12     Telephone Cable 
9.13     Condition for Minimum Attenuation 
9.14     Line Distortion 
9.15     Conditions to Achieve Minimum Attenuation 
9.16     Loaded Line 
Additional Solved Problems 
Review Questions 
Multiple-choice Questions

10. Transmission Lines - II 
10.1     Introduction 
10.2     Standing Waves on a Transmission Line 
10.3     Open and Short-Circuited Lines 
10.4     Input Impedance of Open and Short-Circuited Lines 
10.5     Transmission Line with Load Impedance 
10.6     Voltage and Current Distributions on a Lossless Line 
10.7     Reflection and Reflection Coefficients 
10.8     Standing Wave Ratio 
10.9     Input Impedance in Terms of Reflection Coefficient 
10.10   Location of Voltage Maxima and Minima 
10.11   Impedance Transformation 
10.12   Input Impedance of Lossless SC and OC Transmission Lines 
10.13   UHF Lines as Circuit Elements 
10.14   Stub Matching 
10.15   Single Stub Matching 
10.16   Double Stub Matching 
10.17   Smith Chart 
10.18   Properties of the Smith Chart 
10.19   Applications of the Smith Chart 
10.20   Single Stub Matching Using Smith Chart 
10.21   Double Stub Matching Using Smith Chart 

Additional Solved Problems
Problems Using Smith Chart
Review Questions 
Multiple-choice Questions 

Additional Problems 
Review Questions 
Multiple-choice Questions 


3-6-752 Himayatnagar, Hyderabad,
500 029 Telangana
Phone: (040) 27662849, 27662850
Email: centraloffice@orientblackswan.com
Follow us on
Copyright © Orient BlackSwan, All rights reserved.
Disclaimer and Privacy Policy
Terms and Conditions
Frequently Asked Questions